Friday, July 20, 2018

SQL Language

[2] dt='20180709',该字段是数据库更新时间,若不选该字段,结果将返回过去时间的数据,尤其注意多表关联操作时为每一张表指定更新时间.
[3] 若数据量超限,则应考虑分块查询并下载,如定义抓取时间WHERE bbd_dotime<=to_date('2016-12-31','yyyy-mm-dd').
1
2
3
4
str = '長和';
fod = fopen('test.txt','wt', 'n', 'GBK');
fprintf(fod,'%s',str);
fclose(fod);
[5] 查询语言返回某表的全部字段,限定100条,示例例子.
1
2
3
4
SELECT *
FROM table_name
WHERE dt='updateday'
LIMIT 100;
[6] 部分字段内容为字符型,需将特定编码转换为字符再加入查询语言,如企业类型编码.
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
aa=[9300 1151 1151];

staa=[];
for ii=1:numel(aa)
    a=aa(ii);
    
    if ii<numel(aa)
        staa=[staa, '''', num2str(a), ''', '];
    else
        staa=[staa, '''', num2str(a), ''''];
    end
end

% Output
>> staa
staa =
'9300', '1151', '1151'
>> 
[7] 部分数值型字段潜在混有字符型数值(如空格情形),M代码规避这类异常,如下:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
try
    % 'value' is the column of numeric value
    value=cell2mat(value);
catch
    % check the class of every cell
    indclass=cellfun(@class, value, 'UniformOutput',false);
    % some cell may be the 'char' data type
    indchar=cellfun(@strcmp, indclass, repmat({'char'}, size(indclass)));
    ind=find(indchar==1);
    % delete non-numberic value
    value(ind)=[];
    % convert to numberic matrix
    value=cell2mat(value);
end
[8] 动态调整单行输出字符串数量,如下:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
str1=[];
str2=[];
for ii=1:numel(input)
    % Construct Execute Sentence
    if ii==numel(input)
        str1=[str1, '%s\n'];
        str2=[str2, 'strtrim(num2str(input{', num2str(ii), '}))'];
    else
        str1=[str1, '%s,'];
        str2=[str2, 'strtrim(num2str(input{', num2str(ii), '})),'];
    end
end

cmd='fprintf(fod, ';
cmd=[cmd, '''', str1, ''', ', str2, ');'];
eval(cmd);
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
or operate_scope like '%音乐%'
or operate_scope like '%明星包装%'
or operate_scope like '%歌手%'
or operate_scope like '%影视%'
or operate_scope like '%动画%'
or operate_scope like '%后期制作%'
or operate_scope like '%艺人%'
or operate_scope like '%影片%'
or operate_scope like '%电影%'
or operate_scope like '%专题%'
or operate_scope like '%专栏%'
or operate_scope like '%综艺%'
or operate_scope like '%广播剧%'
or operate_scope like '%电视剧%'
or operate_scope like '%企业形象策划%'
or operate_scope like '%摄制电影%'
or operate_scope like '%影视项目的投资管理%'
or operate_scope like '%图书%'
or operate_scope like '%期刊%'
[10] 示例代码.
1
2
3
4
5
6
7
8
9
% 注册类型排除“个体”
substring(company_companytype,1,2) !='93'
% 规定时间范围
(esdate between date('2017-01-01') and date('2017-03-31') )
% 规定数据版本
dt='20190326'
% 字段(字符型)相似查询,注意可能会收录混杂非需求数据
salary like '%null%'
salary not like '%null%'
1
2
3
4
5
6
7
8
% 按照年月有序输出
select year(pubdate) as year, month(pubdate) as month, count(main) as num
from dw.shgy_zhaobjg
where dt='20190701'
and (pubdate between date('2019-01-01') and date('2019-06-30') )
and title like '%上海%'
group by year(pubdate), month(pubdate)
order by year,month
1
2
3
4
5
6
7
8
% 按照年月省份等字段有序输出
SELECT year(sentence_date) as year ,month(sentence_date) as month , province, case_type, count(distinct bbd_xgxx_id) as num
FROM dw.legal_adjudicative_documents
WHERE dt='20190708'
and case_type like '%刑事%'
and (sentence_date between date('2016-01-01') and date('2019-07-08') )
group by year(sentence_date)  ,month(sentence_date), province, case_type
order by year, month, province, case_type
1
2
% 划定查询范围
company_companytype in ('5800','5600','5200'....)
1
2
% 模糊查询字段
regexp_like(operate_scope, '(锅炉|内燃机|轮机)')
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
--关联两表
select a.company_county, b.company_scale, a.address, a.operate_scope, a.company_industry, company_gis_lat, company_gis_lon
from qyxx_basic a join (select bbd_qyxx_id, company_scale from dw.enterprisescaleout 
where dt ='20190802'
)b
on a.bbd_qyxx_id=b.bbd_qyxx_id 
and a.dt='20191018'
and a.company_county like '11%'
and a.company_type not like '%个体工商户%'
and a.company_type not like '%合作社%'
and regexp_like(a.enterprise_status, '存续|开业|在册|在营')
and (esdate between date('1900-01-01') and date('2015-12-31') )
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
--两张查询表格按照键值合并,可能有子表数据不包含在最终结果
SELECT *
FROM (
    VALUES

        (2, 4, 20)
) AS table_1 (key_A, key_B, y1)
LEFT JOIN (
    VALUES
        (1, 3, 100),
        (2, 4, 200)
) AS table_2 (key_A, key_B, y2)
USING (key_A, key_B)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
--重要参考
select c2.year2 as year0, c2.month2 as month0, c2.industry2 as industry0, c2.province2 as province0, c2.count1_cpws2 as chengtounum, c1.count1_cpws1 as quanbunum
 from
 (select b.year as year1, b.month as month1, a.company_industry as industry1, a.company_province as province1, count(distinct b.bbd_xgxx_id) as count1_cpws1
  from 
  (select company_industry, company_province, bbd_qyxx_id 
   from dw.qyxx_basic 
    where dt='20191106'
     and not regexp_like(company_type, '个体|农民|合作社')
     and not regexp_like(enterprise_status, '注销|吊销')
   ) a
  join
  (select bbd_qyxx_id, bbd_xgxx_id, year(sentence_date) as year , month(sentence_date) as month
   from dw.legal_adjudicative_documents
    where dt='20191106'
     and (to_char(sentence_date, 'yyyy-mm-dd')>='2017-01-01' )
     and bbd_qyxx_id is not null 
   )b
  on a.bbd_qyxx_id=b.bbd_qyxx_id
  group by b.year, b.month, a.company_province, a.company_industry
 ) c1
 right join
 (select b2.year as year2, b2.month as month2, a2.company_industry as industry2, a2.company_province as province2, count(distinct b2.bbd_xgxx_id) as count1_cpws2
  from 
  (select company_industry, company_province, bbd_qyxx_id 
   from dw.qyxx_basic 
    where dt='20191106'
     and not regexp_like(company_type, '个体|农民|合作社')
     and not regexp_like(enterprise_status, '注销|吊销')
     and regexp_like(company_name, '建设投资|建设开发|投资开发|投资控股|投资发展|投资集团|国有资产运营|国有资本经营')
     and company_companytype in ('1110', '1140', '1213', '1223', '3100', '3200', '3300', '3400', '3500')
   ) a2
  join
  (select bbd_qyxx_id, bbd_xgxx_id, year(sentence_date) as year , month(sentence_date) as month
   from dw.legal_adjudicative_documents
    where dt='20191106'
     and (to_char(sentence_date, 'yyyy-mm-dd')>='2017-01-01' )
     and bbd_qyxx_id is not null 
   )b2
  on a2.bbd_qyxx_id=b2.bbd_qyxx_id
  group by b2.year, b2.month, a2.company_province, a2.company_industry
 ) c2
 on c1.year1=c2.year2 and c1.month1=c2.month2 and c1.industry1=c2.industry2 and c1.province1=c2.province2
order by c2.year2,c2.month2,c2.industry2,c2.province2
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
--重点体会CASE用法,注意前SELECT后GROUP BY
SELECT (case when a.company_county like '1101%' then '北京市'
      when a.company_county like '1201%' then '天津市'
      when a.company_county like '1301%' then '石家庄市'
      when a.company_county like '1501%' then '呼和浩特市'
      when a.company_county like '1401%' then '太原市'
      when a.company_county like '2101%' then '沈阳市'
      when a.company_county like '2102%' then '大连市'
      when a.company_county like '2201%' then '长春市'
      when a.company_county like '2301%' then '哈尔滨市'
      when a.company_county like '3101%' then '上海市'
      when a.company_county like '3201%' then '南京市'
      when a.company_county like '3301%' then '杭州市'
      when a.company_county like '3302%' then '宁波市'
      when a.company_county like '3401%' then '合肥市'
      when a.company_county like '3501%' then '福州市'
      when a.company_county like '3502%' then '厦门市'
      when a.company_county like '3601%' then '南昌市'
      when a.company_county like '3701%' then '济南市'
      when a.company_county like '3702%' then '青岛市'
      when a.company_county like '4101%' then '郑州市'
      when a.company_county like '4201%' then '武汉市'
      when a.company_county like '4301%' then '长沙市'
      when a.company_county like '4401%' then '广州市'
      when a.company_county like '4403%' then '深圳市'
      when a.company_county like '4501%' then '南宁市'
      when a.company_county like '4601%' then '海口市'
      when a.company_county like '500%' then '重庆市'
      when a.company_county like '5101%' then '成都市'
      when a.company_county like '5201%' then '贵阳市'
      when a.company_county like '5301%' then '昆明市'
      when a.company_county like '6101%' then '西安市'
      when a.company_county like '6201%' then '兰州市'
      when a.company_county like '6301%' then '西宁市'
      when a.company_county like '6401%' then '银川市'
      when a.company_county like '6501%' then '乌鲁木齐市'
      when a.company_county like '5401%' then '拉萨市'
      else '其他' end) as city, count(b.company_name)
from dw.qyxx_basic a right join dw.recruit b
on a.bbd_qyxx_id=b.bbd_qyxx_id 
where b.pubdate >=to_date('2017-01-01','yyyy-mm-dd') and b.pubdate <=to_date('2017-03-31','yyyy-mm-dd')
and b.dt='20180723'
and a.dt='20180723'
group by (case when a.company_county like '1101%' then '北京市'
      when a.company_county like '1201%' then '天津市'
      when a.company_county like '1301%' then '石家庄市'
      when a.company_county like '1501%' then '呼和浩特市'
      when a.company_county like '1401%' then '太原市'
      when a.company_county like '2101%' then '沈阳市'
      when a.company_county like '2102%' then '大连市'
      when a.company_county like '2201%' then '长春市'
      when a.company_county like '2301%' then '哈尔滨市'
      when a.company_county like '3101%' then '上海市'
      when a.company_county like '3201%' then '南京市'
      when a.company_county like '3301%' then '杭州市'
      when a.company_county like '3302%' then '宁波市'
      when a.company_county like '3401%' then '合肥市'
      when a.company_county like '3501%' then '福州市'
      when a.company_county like '3502%' then '厦门市'
      when a.company_county like '3601%' then '南昌市'
      when a.company_county like '3701%' then '济南市'
      when a.company_county like '3702%' then '青岛市'
      when a.company_county like '4101%' then '郑州市'
      when a.company_county like '4201%' then '武汉市'
      when a.company_county like '4301%' then '长沙市'
      when a.company_county like '4401%' then '广州市'
      when a.company_county like '4403%' then '深圳市'
      when a.company_county like '4501%' then '南宁市'
      when a.company_county like '4601%' then '海口市'
      when a.company_county like '500%' then '重庆市'
      when a.company_county like '5101%' then '成都市'
      when a.company_county like '5201%' then '贵阳市'
      when a.company_county like '5301%' then '昆明市'
      when a.company_county like '6101%' then '西安市'
      when a.company_county like '6201%' then '兰州市'
      when a.company_county like '6301%' then '西宁市'
      when a.company_county like '6401%' then '银川市'
      when a.company_county like '6501%' then '乌鲁木齐市'
      when a.company_county like '5401%' then '拉萨市'
      else '其他' end)
1
2
3
4
5
% 字符规范化
dat=cellfun(@(x) char(x), dat, 'UniformOutput', false);
dat=cellfun(@(x) strtrim(x), dat, 'UniformOutput', false);
dat(:, 1)=cellfun(@(x) [x, '*****'], dat(:, 1), 'UniformOutput', false);
dat(:, 1)=cellfun(@(x) x(1:3), dat(:, 1), 'UniformOutput', false);
1
2
3
4
5
6
% 解析最底层Cell
newinp=tempinp;
    while any(cellfun(@iscell, newinp))
        newinp= [newinp{cellfun(@iscell, newinp)} newinp(~cellfun(@iscell, newinp))];
    end
newinp=newinp';
1
2
--显示dt列表
show partitions from qyxx_wanfang_zhuanli
1
2
3
4
5
6
7
8
9
--存续企业示例
SELECT count(bbd_qyxx_id)
FROM dw.qyxx_basic
WHERE dt='20200720'
and not regexp_like(company_type , '个体|农民专业合作|合作社')
and operate_scope like '%水泥%'
and not regexp_like(operate_scope, '石膏|预制构件|轻质建筑材料|石棉|玻璃纤维|木材|玻璃钢')
and (esdate between date('1900-01-01') and date('2014-12-31') )
and ((company_enterprise_status like '存续') or (cancel_date between date('2014-01-01') and date('2014-12-31')) )
1
2
3
4
5
6
7
8
--存续企业示例之二
select count(distinct bbd_qyxx_id) as company_num
from (select esdate,cancel_date,revoke_date,bbd_qyxx_id
from dw.qyxx_basic
where dt = '20210505' 
and esdate<= date('2020-12-31')
and (cancel_date> date('2020-12-31') or cancel_date is null)
and (revoke_date> date('2020-12-31') or revoke_date is null)
1
2
3
4
5
6
7
--企业筛选条件
--1、剔除个体户和农专社
and company_companytype not in ('9100','9200','9300','9310','9320')
--2、剔除个体工商户、外资企业、港澳台企业等
and company_companytype not in ('9100','9200','9300','9310','9320','5000','5500','5100','5110','5120','5130','5140','5150','5160','5190','5200','5210','5220','5230','5240','5290','5300','5310','5390','5400','5410','5420','5430','5490','5800','5810','5820','5830','5840','5890','6000','6100','6110','6120','6130','6140','6150','6160','6170','6190','6200','6210','6220','6230','6240','6250','6260','6270','6290','6300','6310','6320','6390','6400','6410','6420','6430','6490','6500','6510','6600','6610','6700','6710','6800','6810','6820','6830','6840','6890','7000','7100','7110','7120','7130','7190','7200','7300','7310','7390','9925','9926','9927','9929','9931','9936','9937','9941','1120','1121','1122','1123','1211','1221','2120','2121','2122','2123','2211','2221')
--3、保留存续企业
and company_enterprise_status in ('正常','存续','开业','个体转企业','待迁入','迁入')

No comments:

Post a Comment