Wednesday, January 24, 2024

ML: Image Classification Using Machine Learning-Support Vector Machine(SVM)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# https://medium.com/analytics-vidhya/image-classification-using-machine-learning-support-vector-machine-svm-dc7a0ec92e01

import pandas as pd
import os
from skimage.transform import resize
from skimage.io import imread
import numpy as np
import matplotlib.pyplot as plt

Categories=['Cat', 'Dog']
flat_data_arr=[]
target_arr=[]


datadir=f'D:\PyTest\PetImages\\tkt'
for i in Categories:
    print(f'loading ... category: {i}')
    path=os.path.join(datadir,i)
    for img in os.listdir(path):
        img_array=imread(os.path.join(path, img))
        img_resized=resize(img_array, (150,150,3))
        flat_data_arr.append(img_resized.flatten())
        target_arr.append(Categories.index(i))
        #print(Categories.index(i))
        #print(os.path.join(path, img))
    print(f'loaded category: {i} successfully!')

flat_data=np.array(flat_data_arr)
target=np.array(target_arr)
df=pd.DataFrame(flat_data)
df['Target']=target
x=df.iloc[:,:-1]
y=df.iloc[:,-1]

from sklearn import svm
from sklearn.model_selection import GridSearchCV
param_grid={'C':[0.1, 1, 10, 100], 'gamma': [0.0001, 0.001, 0.1, 1], 'kernel': ['rbf', 'poly']}
svc=svm.SVC(probability=True)
model=GridSearchCV(svc, param_grid)


from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test=train_test_split(x, y, test_size=0.20, random_state=77, stratify=y)
print('Splitted Successfully!')
model.fit(x_train, y_train)
print('The model is trained successfully with the given images!')


from sklearn.metrics import accuracy_score

y_pred=model.predict(x_test)
print('The predicted Data is:')
print(y_pred)
print('The actual data is:')
print(np.array(y_test))
print(f"The model is {accuracy_score(y_test, y_pred)*100}% accurate.")

No comments:

Post a Comment