Monday, February 5, 2024

ML: A simple SAM program from input image to output mask, saving as .tif format

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# https://github.com/facebookresearch/segment-anything/issues/221

import cv2, os
import matplotlib.pyplot as plt
sam_checkpoint='D:/PyTest/kkk/sam_vit_l_0b3195.pth'
model_type="vit_l"
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)

inpath='D:/PyTest/kkk/dog.jpg'
img_arr=cv2.imread(inpath)
img_arr=cv2.cvtColor(img_arr,cv2.COLOR_BGR2RGB)

mask_generator=SamAutomaticMaskGenerator(sam)
# mask_generator = SamAutomaticMaskGenerator(
#     model=sam,
#     points_per_side=32,
#     pred_iou_thresh=0.86,
#     stability_score_thresh=0.92,
#     crop_n_layers=1,
#     crop_n_points_downscale_factor=2,
# #     # min_mask_region_area=100,  # Requires open-cv to run post-processing
# )
predictor=mask_generator.generate(img_arr)

# Choose the first mask
# mask=predictor[0]['segmentation']
# # Remove background by turn it to white
# img_arr[mask==False]=[255, 255, 255]


newimg = img_arr[:, :, 0] * 0
for ii in range(len(predictor)):
    # print(ii)
    mask=predictor[ii]['segmentation']
    # newimg = img_arr[:, :, 0] * 0
    newimg[mask == True] = ii+1
    # filename = os.path.join('D:/PyTest/kkk/export',str(ii+1)+'.tif')
    # cv2.imwrite(filename, newimg)

# plt.imshow(img_arr)
# plt.axis('off')
# plt.show()
filename='D:/PyTest/kkk/dog_new.tif'
cv2.imwrite(filename, newimg)

No comments:

Post a Comment